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ABSTRACT

A 12-in.-diameter, 6-ft-long cylinder was towed hori-
zontally 4 ft beneath the water surface and perpendicular
to the flow. The cylinder was towed at a constant velocity
under the following conditions: mnonoscillating, oscillating
in heave, oscillating in pitch (around the axis of the cy-
linder), and simultaneously oscillating in pitch and heave.
Experimental data on 1ift, drag, and moment were obtained
for Reynolds numbers from about 10° to above 10° The
results show that the oscillations can significantly in-
fluence the magnitude of the 1ift, drag, and moment.

ADMINISTRATIVE INFORMATION

The experimental work was sponsored by the Naval Ship Systems Com-
mand (NAVSHIPS) and funded under Subproject S4611 010, Task 11098. The
preparation of this report was supported by the Naval Ship Research and
Development Center (NSRDC) Training Program and NAVSHIPS Subproject S4627
007, Task 14822.

INTRODUCTION

A cylinder translating through a fluid is subject to a steady drag
and unsteady 1ift and drag forces. These forces are usually converted to
coefficient form, or nondimensionalized, by dividing them by the dynamic
pressure times the frontal area of the cylinder. These coefficients are
functions of Reynolds number (Rh) and have been investigated in ma?y
studies some of which are discussed in summary papers by Morkovin,
Marris,2 and others. In the present study, the Reynolds number was varied
from about 105 to above 106 and the pitching moment about the axis of the

cylinder was also measured. As far as is known, this is the first time

1Morkovin, M.V., "Flow around Circular Cylinder--A Kaleidoscope of
Challenging Fluid Phenomena,' ASME Symposium on Fully Separated Flows
(May 1964). A Complete list of references is given on page 77.

Marris, A.W., "A Review on Vortex Streets, Periodic Wakes, and In-
duced Vibration Phenomena,' ASME Paper 62-WA-106 (1962).




that such measurements have been made and reported. Lift, drag, and
moment measurements were also made for the cylinder translating at a
Reynolds number of 2 x 10? 5x 10? and 1 x 106 and oscillating in heave
(percendicular to the flow) at forced Strouhal numbers (Sf) up to 0.25.
Lift and drag measurements were made for the cylinder oscillating in
pitch (around the axis of the cylinder) for about the same ranges of
Reynolds numbers and forced Strouhal numbers up to 0.40. At a Reynolds
number of 1 x 10? data were obtained for simultaneous pitch and heave by
pitching the cylinder around the axes d/4 forward and aft of the axis of
"the cylinder at forced Strouhal numbers up to 0.30. As far as the author
knows, the pitching data and the data for simultaneous pitching and heaving
are unique.

The data presented in the appendixes were obtained by analyzing the
power spectra to obtain "Fourier type' coefficients for the power spectra
peak frequencies. These data may be readily used by a designer or engi-
neer to represent the lift; drag, or moment as a series, the major com-
ponents of which are represented by these '"Fourier" coefficients. For
example, some of the nonoscillating cylinder data presented in this report
have been used as the hydrodynamic input to a digital computer program
known as '"Structural Analysis by Digital Simulation of Analog Methods"
(SAD SAM) to study periscope vibrations.

It is not the intent here to go into much discussion of the physical
phenomena that are occurring, but rather to present data for the use of

designers and engineers and for the scrutiny of other researchers in fluid

mechanics.

DESIGN OF THE EXPERIMENT

EXPERIMENTAL EQUIPMENT

The NSRDC high-speed basin and Carriage 5 were used for the experi-
ment. A pitch heave oscillator (PHO-2) was mounted on the carriage and

the model was held horizontally with its axis 4 ft below the surface. The



operational limitations of the oscillator are shown in Figure 1.3 The
heave or pitch amplitude was monitored with a calibrated linear voltage
differential transducer (LVDT) mounted in the PHO-2 mechanism.

The experimental cylinder shown attached to the pitch heave
oscillator in Figure 2 was 1 ft in diameter and 6 ft long. Since cylinders
with length-to-diameter ratios below 6 do not behave as infinite cy-
1inders,4 1 ft was the largest diameter that could be used. For diameters
much smaller than 1 ft, Reynolds numbers Rn above 106 would be difficult
to obtain since the necessary velocities would be close to the wavemaking
velocity of the high-speed basin and the cavitation inception velocity of
the cylinder.

The 1ift, drag, and moment about the cylinder axis were measured
on a short dynamometer section located at the center span of the cylinder.
This section 'floated" on a dynamometer with small gaps between the
section and the rest of the cylinder.

It has been observed by Macovsky5 that the flow over a cylinder is
often three dimensional. Thus, in order to obtain true two-dimensional
forces, it would be necessary to make the length of the dynamometer
section as short as possible. The natural frequency of the section is in-
versely proportional to its length. The natural frequencies were kept
above 200 Hz so that there would be little interference in the range of
frequencies analyzed (0 to 50 Hz). However, from the viewpoint of the
dynamometer, the longer section results in the larger forces; thus, more

accurate force measurements can be made. It has been suggested by

3”Instruction Manual: Pitch-Heave Oscillator System,' Prepared for
Consolidated Systems Corporation, TM 3-3081, David Taylor Model Basin
(15 Apr 1964). ‘

4Keefe, R.T., "An Investigation of the Fluctuating Forces Acting on a
Stationary Circular Cylinder in a Subsonic Stream and of the Associated
Sound Field," University of Toronto Institute of Aero. Physics, UTIA
Report 76 (Sep 1961).

5Macovsky, M.S., '"Vortex-Induced Vibration Studies," David Taylor Model
Basin Report 1190 (Jul 1958).



‘Sommerville and Kobett6 that various size dynamometer sections be used in a
series of tests to determine the three-dimensional effects of force can-
celling due to phase shifts. True two-dimensional force coefficients may
also be determined as a limit to a series. In this case the true two-
dimensional 1ift coefficient could be defined as:

C = lim-l— :

Lo g0 ¥ (1/2)00%

where £ is the length of the dynamometer section,
L is the 1ift,
p is the density of the fluid,
U is the free-stream velocity, and

d is the diameter of the cylinder.

It was not feasible to have many sections of different length for
fhis particular experiment because of the cost involved and the difficult
design of the dynamometer. Studies by Graham7 indicate that the corre-
lation length is on the order of 3 diameters in the subcritical regime and
1 diameter in the transition regime. On that basis, therefore, the dy-
namometer section should be less than 1 diameter in length to ensure a
somewhat two-dimensional flow. An estimate of expected forces per unit

length on the cylinder was made from existing data of Luistro8 and Warren.9

6Sommerville, D.E. and D.R. Kobett, '"Research and Development Services
Covering Wind Induced Oscillations of Vertical Cylinders,' Midwest Research
Institute, Contract DA-23-072-ORD-1264, Phase Report 2, MRI Project 2190-P
(Apr 1959).

. 7Graham, C., "A Survey of Correlation Length Measurements of the Vortex
Shedding behind a Circular Cylinder," MIT Engineering Projects Lab
Report 76028-1, Prepared under Contract Nonr. 3963(25) (Oct 1966).

8Luistro, J.A., "Lift and Drag Coefficients for a Smooth Circular Cy-
linder at High Reynolds Numbers,' David Taylor Model Basin Report 1405
{(Nov 1960).

9Warren, W.F., "An Experimental Investigation of Fluid Forces on an
Oscillating Cylinder," Ph.D. Thesis, University of Maryland (1962).
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An estimate of the moment on the cyl;nder was computed from the 1ift by
finding the gross circulation needed to obtain that 1ift and then com-
puting the shear force that this circulation would cause on the surface of
the cylinder. This shear force would cause a moment about the axis of the
cylinder. Given these forces and moments, it was determined that a dy-
namometer section length of less than 6 in. would cause large interactidns
in the dynamometer. Accordingly, a length of 6 in. was chosen for the
dynamometer section. -

One objective of this test was to study the three dimensionality of
the flow on the cylinder. The three-dimensional flow for the experimentél
system would possibly arise from at least four sources: the wake of the
cylinder support system (PHO-2 struts), the fact that the cylinder is i
finite with end plates, misalignment of the cylinder perpendicular to the
flow, and inherent three-dimensional effects which would be present in én
infinite circular exposed to uniform crossflow. The wake of the supporting
PHO-2 struts was reduced by’altering the existing rounded noses of the
struts so that the insides of the struts were basically flat plates. All
of the curvature of the nose section was made to the outside of the struts.
It was hoped that this would result in uniform flow along the whole length
of the model except for a small boundary layer on the inner side of the
struts. The majority of the disturbance to the flow field would be to the
outside of the strut. A cylinder length-to-diameter ratio of 6 was chosen
in the expectation that this ratio would be large enough to preclude anyﬁ
great three-dimensional effects due to the end plates (PHO-2 struts). It
was felt that a region of 4 ft in the middle span of the cylinder would
experience incident uniform flow. The PHO-2 was aligned very carefully
with a reference line on the carriage. The maximum alignment error of the
cylinder normal to the towing direction was much less than 1 deg. ‘

Various spanwise measurements of the flow were made in order to ob-
serve the three-dimensional effects. A ring of pressure gages was mounted
on the dynamometer section of the cylinder and another ring of pressure
gages was located 10 in. away. The correlation length for spanwise effects
is on the order of 3 diameters for subcritical Reynolds numbers, from 1 to

6 diameters for transition Reynolds numbers, 1/2 diameter for transcritical




Reynolds numbers.7 Hot film anemometers were placed spanwise over one-half
of the cylinder in such a manner that at least two would lie within the
correlation length for all three Reynolds number regimes. The correlation
length for supercritical is the smallest, so this spacing had to be

0.5d/2 = 3 in. Several additional hot film anemometers were placed on the
other side of the cylinder to check symmetry and for additional information.
The location of gages is shown in Figure 3.

The hot film aneometers were all located at an angle of 78 deg; this
allowed these transducers to be moved from 72 to 88 deg by rotation of the
cylinder. According to Cahn,10 the separation point on a circular cylinder
for subcritical flow lies between these two values. Thus, it was felt that
the use of these transducers would enable the separation point to be
located in this flow regime.

The type of hot film aneometer used on the test was the end-mounted
cylindrical type.* The gage consists basically of two wires set parallel
along the axis of a glass cylinder with a thin platinum film mounted on the
end of the cylinder across the ends of the two wires. This glass cylinder
was then mounted in the end of a stainless steel tube 0.095 in. in diameter
and 1 1/8 in. long. The gages were mounted in the test cylinder with the
end of the gage flush with the surface of the cylinder. The gage subtended
an angle of less than 1 deg of the test cylinder. The gage resistance was
between 10 and 15 Q. A resistor of about 85 to 90 Q was connected in
series with the gage to form the active arm of a 100 @ bridge. The bridge
was powered and balanced by an ENDEVCO constant-current signal-conditioning
unit.

The gages operate on the principle of a change in resistance due to
temperature change. The heat transfer of the IZR heat generation in the

gage is mostly transferred to the water. This heat transfer to the water

10Cahn, R.D., "The Nature of Flow Separation from a Circular Cylinder
Near the Critical Reynolds Number,' Masters Thesis, University of Maryland,
Aeronautical Engineering Department (1963).

*
Obtained from Lintronic Laboratory, Silver Spring, Maryland.



is greatly dependent on the flow properties. Thus, as the flow properties
change, the heat transfer changes, changing the operating temperature of
the gage. The changes in resistance due to the temperature change result
in a resistance imbalance in the bridge which will then give rise to a
voltage output.

A rough calibration of the hot film gages was done by inserting the
gages into a pipe in which water was displaced by a piston. The results
showed that some of the gages had as much as twice the sensitivity of
others. However, this fact caused no difficulty since it had been plénned
to use these gages for qualitative data only.

Because of their cost, the number of these pressure gages was
limited to about ten. Two rings of five each were placed at angles of 70,
85, 100, 115, and 130 deg from the leading edge. The gages were placed at
these angles in order to have one gage before the separation p01nt for sub-
critical Reynolds numbers (less than 75 deg according to Cahn ) and the
rest in the wake. The wake area was of most interest since this is the
region of vortex shedding and the pressure distribution in front of the
separation region‘is very close to the potential flow distribution. The
gages were placed 15 deg apart since the cylinder could be rotated 6 deg
down and 10 deg up. This would allow pressures to be measured over the
whole surface from 64 to 140 deg. '

The pressure transducers used for the experiment were modified Pr3
pressure gages designed and built by NSRDC. The gages are cylindrical in
shape with a diameter of 1/4 in. and a length of about 1/4 in. The
immediate pressure sensor is a thin metal diaphragm on the end of the cy-
linder which deflects slightly when exposed to pressure. A four-active¥arm,
strain-gage bridge made of 500-f semiconducting resistance strain gages is
mounted on the diaphragm. The bridge was powered by a special low current
(3 ma) power supply. The calibration of the gages was done by inserting
them into an airtight system which was comprised of a pressure generator
(bellows) and a parallel manometer to read the pressure in the system. The
gages were mounted in the model such that the diaphragm was exposed to the
flow and flush with the surface of the cylinder. The 1/4-in. flat diaphragm
on the 1-ft-diameter cylinder subtended an angle of slightly more than
2 deg.




The carriage velocity was determined from a calibrated rotopulser on
the wheel of the carriage. An accelerometer was mounted in the test section
to monitor possible vibration and to serve as a backup for the LVDT when-
Lever the cylinder was oscillated.

A block diagram of the electronic instrumentation used to condition

‘anid record the transducer outputs is shown in Figure 4.

SUMMARY OF EXPERIMENTAL PROGRAM

The primary independent variables for the experiment were carriage
velocity and frequency of oscillation. These two parameters were varied
during testing to obtain data for Reynolds numbers from 104 to above 106
and oscillating Strouhal numbers from 0 to 2. Heave runs were made at
Reynolds numbers of O, 10% 2 x 10? 5x 105 and 1 x 106 with an amplitude-to-
diameter ratio of 0.0417. Pitch runs were made at Reynolds numbers of 0,
10? 2 x 10? 5x 10% and 1 x 106 with an amplitude of 1 deg with pitching
axis coinciding with the axis of the cylinder. At a Reynolds number of
1x 10? simultaneous pitch and heave runs were made by positioning the
pitching axis at a horizontal distance of $0.25 diameters from the axis of

the cylinder and pitching with an amplitude of 1 deg.

ERROR ANALYSIS

The estimated maximum percent errors in the measurement of the con-
stants and variables in the experiment are listed in Table 1. These maxi-
mum percent errors in the nondimensional numbers and coefficients were

calculated from the equation11

2 2
w2=(—g§> W 2+<._gg> W e
c 1 Xy 2 X5

llSchenck, H., "Theories of Engineering Experimentation,' McGraw-Hill
.Book Company, Inc., New York (1961).
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where WC is the maximum percent error in C,
Wx is the maximum percent error in X: s
i
C is the coefficient or nondimensional number, and
X1sX,y,"" " are independent variables.
The coefficients and nondimensional numbers used to analyze the data are
defined as

a/d Half amplitude to diameter ratio,

CD Drag coefficient = D/(1/2 pUzA),
CL Lift coefficient = L/(1/2 pUZA),
C, Moment coefficient = M/(1/2 oU%Ad),
Cp Pressure coefficient = (p - pa)/G/Z pU2>
Fn Froude number = U/ygh,
ud
Rn Reynolds number =y
Sf * Strouhal number of forced oscillation =-§i, and
fid
Sf Strouhal number of i-th component = ——
i ] U
Therefore,
- 1/2
2 2
W W W 1/2
a/d _ < a) d _ [ 2 2] N
2/d - |\a +<d ) = ((2.0)" + (0.042) % 2.0
L
— 1/2
WC W 2 W 2 W 2 W 2
(D) L(Ze) . a(ny) . _A)
CD i D o} U A

2
[(6.59)2 + (0.05)° + 4 lUl> + (0.053)

2]1/2
N [(6.59)2 v 4 <_1_U_7.)2]
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1.7

—U—)z + (0 ..053) 2]1/2

(9]

1/2
+ (0.053)2 + (0.042)2]

)2]1/2



p—

2 1/2
- (-IU—7> + (0.042)% + (0.7)2]

- 2 1/2
() - (0.7)2]

-

2

el 97"

271/2
- [w0.562 + (0.042)° + (11}7)]

—

N r(o..s.f)2 " (1—1']1)2]1/2

—
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CORGIIN

The estimated maximum experimental errors in the coefficients and nondi-
mensional numbers were calculated from the above equations and are shown as

a function of Reynolds number and frequency in Figure 5.

WAVE DRAG CALCULATION

The wave drag of the cylinder was calculated from the following

. 12
equations:
c . md’ [53 cosh® (1 - h/H)g]
W ud L osinhoe-¢
th £ = tanh §

where Cw is the wave drag coefficient,

d is the cylinder diameter = 1 ft,

h 1is the cylinder depth = 4 ft, ‘

H is the water basin depth = 16 ft,

Fn is the Froude number based on basin depth = U/(éH)l/z, and

g 1is the gravitational constant.

12Sretensky, L.N., "Motion of a Cylinder under the Surface of a Heavy
Fluid," NACA T 1335 (Aug 1953).
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The wave drag coefficient is shown as a function of Froude number in

Figure 6.

BLOCKAGE CALCULATION

PHO-2 STRUT/S\ WATER SURFACE
S | S L’T"L

[ TFT

6 FT|L_t i‘”
4 07 J

7IN.->H‘—6 7w e

FT

HIGH-SPEED BASIN

[t 21 FT ———e——t

Frontal area of PHO-2 struts = 2 x 6 ft x 7/12 ft = 7 ft2

Frontal area of cylinder = 1 ft x 6 ft = 6 ft2

Total blockage area = 13 ft2
Frontal area of high speed basin = 21 ft x 16 ft = 336 ft2
Blockage area ratio = 13/336 = 0.0387

The blockage is 3.87 percent. This means that the characteristic flow

velocity will be slightly higher than the carriage velocity, or

Ucharaéteristic ®1.04 U

DATA ANALYSIS

DATA REDUCTION

The data recorded on analog tape during the experiment were digitized
by using the SDS 910 computer of the Computation Mathematics Department
(CMD) at NSRDC. The effective scan rate per channel of 400 points per
second allowed analysis of the data up to 100 Hz. The digital data for the
lift, drag, moment, and pressures were analyzed by using the IBM 7090
digital computer of the CMD. The computer analysis program was based on an

existing CMD program which uses the Fast Fourier Transform (FFT) technique

14



to calculate the power spectrum. (The program has recently been converted
for use with the CDC 6700 digital computer at NSRDC.) The mean value,‘
maximum value, minimum value, mean square value, root mean-square valué,
and power spectrum data were calculated for a sampling of (213) points,
corresponding to 20.48 sec in the center of each set of data.

Coefficients were then defined as

mean value during run

ave
C = maximum value - minimum value
p-p/c

C = root-mean-square value

rms/c

The computer program was modified to further analyze the power
spectrum. The 20 largest power spectrum peaks not more than 20 dB below
the largest peak in the range between 0 and 50 Hz were determined. The
power near each of the peaks was determined by integration. The limits of
integration were (1) either the points at which the power spectrum failed
to decrease monotonically giving away from the peak, or (2) the points at
which the power spectrum value dropped to 20 dB below the peak value
(1 percent of peak value), whichever came first. The square root of the
powers determined in this manner represents force or moment coefficients
associated with the peak frequencies. The peak frequency and associated
coefficient were calculated and printed out as well as the left end, right
end, bandwidth of integration, and the Strouhal number of the peak fre-
quency. From these coefficients, the known electronic noise at pre-
determined frequencies as determined from a zero velocity and frequency run
was subtracted out, and the maximum possible value (Cp_p) and the root-

mean-square value (Crms) were obtained from

N
. C = 2 2 C.
P-P 1
i=1

15



N NV
C = 0.707 zc.
Tms 1
i=1

where N is generally 20 less the number of'power spectrum peaks due to
noise.

The data analysis described above was augmented in the case of the
1lift on the nonoscillating cylinder by data obtained from the Sanborn
oscillograph strip charts. These data supply additional information on the
character of the 1ift and allow the data in this report to be compared with
those of other studies (this has been done by Wangls). The Sanborn data
were examined to obtain peak-to-consecutive-trough values. The maximum
values that were repeated several times during the run are reported and
labeled ”Cp-p/s'" A schematic is given to help clarify the data anélysis

techniques used; see Figure 7.

DYNAMOMETER CORRECTIONS FOR
OSCILLATING CONDITIONS

A series of oscillation experiments was performed at zero velocity
in order to determine the inertial terms which would later be subtracted
from the data. Inertial loading of the moment gage during pitching, lift
gage during heaving, and moment and lift gages during pitching and heaving
were determined. The dynamometer was balanced before the experiment to
eliminate the iload on the 1ift gage during pitching. However, the
dynamometer could not be simultaneously balanced to eliminate the rest of
the dynamometer interactions. All of these interaction forces and moments
except the interaction moment during heaving showed a simple dependence on

the square of the forcing frequency. Thus

2
S.U
C 2 f 2 .2
F e« f7 = <_:T_> o Sf U

13Wang, H.T., "Survey of the Magnitude and Correlation of the Lift Force
Acting on a Nonoscillating Circular Cylinder,'" NSRDC Report 3335 (in
review).
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where F represents any interaction force or moment,
f is the frequency,

S,. is the Strouhal number of forced oscillation,

U is the free-stream velocity, and

d is the diameter of the cylinder.

If the force or moment is nondimensionalized by its appropriate term, then

The resulting interaction force or moment coefficients (C) are seen to
have a simple dependence on the square of the forced Strouhal number. This
is shown in Figures 8, 9, and 10a. The interaction moment due to heaving
is not a simple function of .frequency and so the above simplification
cannot be made. The interaction moment due to heaving is shown versus
forced frequency in Figure 10b. From the data in Figure 10b, the inter-
action moment coefficients due to heaving were determined as a function of
forced Strouhal numbers for the various Reynolds numbers tested and are
presented in Table 2. '

s

EXPERIMENTAL RESULTS AND DISCUSSION‘

GENERAL REMARKS

The dynamometer data are considered the most interesting of the data
collected. These data were reduced first; the coefficients reported in
this section have not been corrected for wave drag or blockage effect. One
plot is presented of the pressure data obtained on the dYnamometer section
for the nonoscillating cylinder at various Reynolds numbers. Some of the

hot film data were useful in determining the flow separation angle on the
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TABLE 2 - HEAVE EFFECT ON MOMENT GAGE

e R = 1085 X 10° e 2 X 10° R = 10°
f S¢ i 3 Sf i 3 St i 3 S¢ "
(Hz) x 10 x 10 x 10 x 10
0.44 | 0.044 | 0.0167 | 0.088 | 0.0668 | 0.220 | 0.4175 | 0.400 | 1.67
0.50 | 0.050 | 0.0168 | 0.100 | 0.0672 | 0.250 | 0.4200
0.60 | 0.060 | 0.0195 | 0.120 | 0.0780 | 0.300 | 0.4875
0.75 | 0.075 | 0.0273 | 0.150 | 0.1092 | 0.375 | 0.6825
0.80 | 0.080 | 0.0358 | 0.160 | 0.1432 | 0.400 | 0.8950
0.90 | 0.090 | 0.0417 | 0.180 | 0.1668
1.00 | 0.100 | 0.0649 | 0.200 | 0.259
1.10 | 0.110 | 0.0714 | 0.220 | 0.2856
1.25 | 0.125 | 0.0797 | 0.250 | 0.3188
1.50 | 0.150 | 0.0931 | 0.300 | 0.3724
1.80 | 0.180 | 0.1013 | 0.320 | 0.4052
2.00 | 0.200 | 0.1126 | 0.400 | 0.4504
2.20 | 0.220 | 0.1236
2.50 | 0.250 | 0.1436
3.00 | 0.300 | 0.1880
4.00 | 0.400 | 0.3443
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cylinder. These hot films and the critical Reynolds number data have been
compared with other experimental and theoretical work and are presented

separately.14

NONOSCILLATING CYLINDER

The results of the nonoscillating cylinder experiment are giveﬁ in
Appendixes A and B and Figures 11-15. The power spectra of the 1ift given
in Appendix A for various Reynolds numbers showed single peaks for Reynolds
numbers below 2.5 x 10? Above this Reynolds number, multiple peaks f?r the
lift were found. The power spectra for the drag and moment indicated
multiple peaks for the range of Reynolds numbers from 2.5 x 10S to
1.5 x 10?

Although the power spectra plots given in Appendix A show the
character of the 1lift, drag, and moment, the quantitization of the power
spectrum data as described in the section on data analysis makes these data
more usable and reveals added information on the character of the daté
signals. For example, the power spectrum of the 1ift for Run 13 showed the
largest peak at 0;29 Hz and the second largest peak at 0.78 Hz, The peak
value at 0.78 Hz was less than 80 percent of the peak value at 0.29 Hz.
However a comparison of the power around the two peaks indicates that the
power around 0.78 Hz was slightly greater than that around 0.29 Hz. Thus,
the maximum peak was considered to be at 0.78 Hz.

The data obtained from further analysis of the power spectra are
tabulated in Appendix B. Some of the smaller peaks visible on the power
spectra plots are occasionally not represented in the tabulated data.
These peaks were either not one of the maximum 20 peaks in the range of
frequencies from 0 to 50 Hz or were more than 20 dB below the maximum peak
in that range. The maximum possible values (Cp_p) and the root—mean—sﬁuare
values (Crms) calculated from the power spectrum data and tabulated in

Appendix B are presented in Figures 11-14.

»

14Coder, D.W., "Location of Separation on a Circular Cylinder in Cross-
flow as a Function of Reynolds Number,' NSRDC Report 3647 :(Nov 1971). .
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The 1ift coefficients (CL)p_p and (C are shown in Figure 1lla.

L)rms o

The solid lines are hand-faired curves drawn through the data points. The
dotted lines are from 'supercritical' data obtained in a wind-tunnel by
Fung.15 The data of this report are in agreement with the Fung peak Qalues,
but somewhat smaller than the Fung root-mean-square values. The lift data
of this report were compared with data from many other studies cited by
Wang.13 The 1ift curves exhibited large dips for Reynolds numbers from
about 1.5 to 5.0 x lO? This is the so-called 'transition regime' that
begins at the critical Reynolds number and ends at the beginning of the
"transcritical regime' where the flow becomes somewhat independent of
Reynolds number. From the 1ift data it appears that the critical Reynolds
number is about 1.5 x 105 and the transcritical regime starts at 5.0 x 10?
The hot film datal® indicated a critical Reynolds number of about

2.5 x 105 on the cylinder away from the dynamometer section. There is evi-
dence that the critical Reynolds number on the dynamometer section was some-
what smaller due to the rougher aluminum surface.

The character of the lift in the subcritical regime (below the
critical Reynolds number) is that it is composed of one component whose
Strouhal number is about 0.2. The magnitude of the 1lift decreases in the
transition regime and the number of components increases as the trans-
critical regime is approached. Thus, in the subcritical and the beginhing
of the transition regime where the 1ift has only one component, the
repeatable peak-to-peak values of the lift coefficient as determined from
the Sanborn oscillograph traces (CL)p—p/s should agree well with (CL)p_p
determined from the power spectrum. This was the case for Reynolds numbers
up to about 2.5 x 105 as shown in Figure 11b. For Reynolds numbers of
4.0 x 105 and larger, (CL)p—p/s

expected whenever the number of 1ift components increase.

was much lower than (CL)p—p’ which is to be

The premise used to compute Cp—p from the power spectrum by simply

adding the magnitudes of the components is that if the components were:

l

15Fung, Y.C., "Fluctuating Lift and Drag Acting on a Cylinder in a Flow
at Supercritical Reynolds Numbers,'" IAS Paper 60-6 (Jan 1960).
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completely independent of each other (i.e., have no consistent phase angle
relationship with each other), the components would add up to this maximum
value at some time. If there happens to be some phase relationship between
some of the components, they can only add up to some value smaller than
this. Therefore, this value may be regarded as the maximum possible value.
The root-mean-square values calculated from the power spectrum should be
very accurate since phase differences are not a factor in determining rms

values. The maximum peak-to-peak values (CL) and root-mean-square

p-p/c
obtained directly from the raw data were in good agreement

values (CL)rms/c :

with (CL)P_p and (CL)rms’ respectively, for Reynolds numbers of 5.0 x 10
and above as shown in Figure 11b. The noise in the data made the values of

L)p~p/c and (CL)rms/c
overode the data signal and showed up on a log-log plot of coefficient

worthless for smaller Reynolds numbers. The noise

versus Reynolds number as a straight line of slope -2. The data distorted
by noise are connected with dotted straight lines of slope -2 to show this
effect; see Figure 11b. |

The Strouhal number of the largest component of the lift is plotted
versus Reynolds number in Figure 12. In the subcritical and transition
regimes, the Strouhal number was about 0.2 up to Rn = 2.0 x 10? For
Rn = 4.0 x 105 and larger, the Strouhal number dropped below 0.2 to a rough
average value of 0.12. The Strouhal numbers corresponding to the Fung
power spectra peaks are included in Figure 12 and confirm this decrease in
Strouhal number. _ |

The average, the peak-to-peak, and the root-mean-square drag co-

efficients (CD) and (CD)rms’ respectively, are shown in

ave’ (CD)p-p’ 6
Figure 13 for Reynolds numbers from 4 x 10~ to 1.5 x 10, The root-mean-
square values remained about constant in this regime, but the peak-to-peak
and average values showed a slight drop for Reynolds number below 5 X 10?
The root-mean-square values compared favorably with the Fung values, but
the Fung mean values which should correspond to (CD)ave were only one-half
as large. However, the data agreed well with average values reported by
Luistro.8 Unfortunately, Fung does not report peak—to-péak values of the

drag to compare with (C .
g to comp Cplpp
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The moment coefficient data given in Figure 14 are unique as far as
this author knows. The data show that the root-mean-square value of
moment coefficient remained constant for Reynolds numbers from 4 x 10S to
1.5 x 10? whereas the peak-to-peak values showed a slight continual in-
‘crease over this range.

The pressure on the dynamometer section is given for various

Reynolds numbers in Figure 15.

CYLINDER OSCILLATING IN HEAVE

As shown in Figures 16-23, the 1lift, drag, and moment were influenced
by oscillation of the cylinder in heave. The peak-to-peak and root-mean-
square lift coefficients for Reynolds numbers of 2 x 10? 5 x lO? and
1x 106 first reduced to a minimum as the Strouhal number of heave os-
cillation was increased to about 0.15. The 1ift then increased to its
maximum value at a Strouhal number of about 0.2. This characteristic of
the 1lift has been observed for lower Reynolds numbers by Warren9 and
Bishop and‘Hassan.16 In the supercritical regime, Fung15 oscillated his
cylinder at amplitude-to-diameter ratios up to 0.0395 but the Strouhal
numbers of heave oscillation were less than 0.09, well below the range of
the present study.

For a Reynolds number of 2 x 10? the average drag increased about
30 percent whenever the cylinder was oscillated. However, at the higher
Reynolds numbers of 5 x 105 and 1 x 10? the average drag decreased with
oscillation. The peak-to-peak and root-mean-square values appeared to

decrease for Strouhal numbers of heave up to about 0.15. For R_ = 5 x 105

they increased again up to Sf = 0.18 and decreased for higher S.. The same

N B

was true for Rn = 106 except that there was an extra dip at Sf 0.20.
The moment coefficients for Rn =5 x 105 and 1 x 106 showed a sig-

nificant dip at Sf = 0.20.

16Bishop, R.E.D. and A.Y. Hassan, "The Lift and Drag Forces on a Circular
Cylinder Oscillating in a Flowing Fluid," Proc. of the Royal Society, A,
Vol. 277, pp. 51-75 (1963).
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CYLINDER OSCILLATING IN PITCH

Oscillating the cylinder in pitch also affects the 1ift and drag
coefficients as shown in Figures 24-29., As far as this author knows, these
data are unique. For a Reynolds number of 2 x 10? the effect due to os-
cillation in pitch appears similar to that of heave (dotted line on
Figure 24) but not as drastic. The troughs and peaks located at Strouhal
numbers of about 0.15 and 0.20, respectively, were the same as for heave.
For a Reynolds number of 5 x 10? the troughs and peaks were more to the left
of those for heave and occurred at about 0.1 and 0.15, respectively, as
shown in Figure 25. The shape of the curves for pitch in Figure 26 for
Rn =1x 106 was completely different from those for heave. The dramatic
changes in the pitch curves occurred for Strouhal numbers of pitch less
than 0.15, where few data points were taken. It would be well to repeat

- this experiment to obtain more measurements in this low Strouhal number
range. ' _

For a Reynolds number of 2 x 10% the average drag shown in Figure 27
was increaéed due to oscillation in pitch, just as was the case for heave.
However, unlike heave, the effect of pitch oscillation on the average drag
was negligible for the larger Reynolds numbers of S5 x 105 and 1 x 106 as
shown in Figures 28 and 29. The unsteady drag for pitching appeared to be
very similar to that for heave for Rn =5 X 10? but somewhat different for

R =1x 10?
n

CYLINDER OSCILLATING IN PITCH AND HEAVE

Oscillating the cylinder at a half amplitude of 1 deg around axes
+0.25 diameter from its axis resulted in simultaneous pitching and heaving.
The two motions were pitching at a half amplitude of 1 deg and heaving at
an amplitude-to-diameter ratio of 0.00437. The difference in motion be-
tween locating the pitching axis forward (+) or aft (-) of the cylinder
axis may be stated in terms of motion of the most forward point of the cy-
linder relative to its most aft point. For e&/d = +0.25, the most aft point
moved a distance three times as far as the most forward point. For
e/D
aft point.

-0.25, the most forward point moved three times as far as the most
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The data for the lift during simultaneous pitching and heaving
(Figures 30 and 31) showed no easily identifiable trends, not behaving like
either the pitching results or the heaving results. However, the drag data

in Figures 32 and 33 showed a definite correlation with the heave data.
SUMMARY AND CONCLUSION

The 1ift, drag, and moment were measured on nonoscillating and os-
cillating cylinders for Reynolds numbers from 105 to lO? Because of the
sensitivity of the dynamometer, data at some of the lower Reynolds numbers
were not obtainable. These data could be obtained by making the
dynamometer more sensitive and repeating the appropriate parts of the
experiment. Some data, however, were obtained for each of the subcritical,
transitional, and transcritical regimes of fluid flow. The data are pre-
sented in the appendixes as mean values, peak-to-peak values, root-mean-
square values, and unsteady components at discrete frequencies. This
allows the data to be used easily by the designer. It is unfortunate that
previous investigators did not present their unsteady data in a similar
manner so that further comparisons with the data in this report could be
made. Where comparisons were possible, the mean values, peak-to-peak
values, and root-mean-square values reported herein were in general
agreement with selected data existing in the literature.

The mean drag and peak-to-peak and root-mean-square 1ift and drag
for the noncscillating cylinder exhibited the general trends observed by
other investigators (i.e., the drop and subsequent rise to a lower level of
the coefficients in the transition regime). The peak-to-peak and root-
mean-square moment coefficients, which have not been measured previously,
behaved similar to the 1lift and drag where meaningful measurements were
made in the transition and transcritical regimes. The coefficients in-
creased significantly for Reynolds numbers from 4 x 105 to about 6 x 105
and then tended to flatten out at higher Reynolds numbers.

Taken collectively, the data for the oscillating cylinder show that
the forces and moments may be significantly affected by oscillation depend-
ing on the oscillation frequency. The most significant effects were seen

near a forced Strouhal number of 0.2, the Strouhal number of vortex
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shedding for the subcritical regime! Whether it was a peak or a trough at
this Strouhal number, the effect was generally more pronouﬁced the lower
the Reynolds number (i.e., of the three Reynolds numbers 2 x 10? 5x 10?
and 1 x 106). The phenomenon of pronounced influence near this Strouhal
number has been observed and reported in the literature for 1ift and drag
for heaving in the subcritical regime. It appears that this effect also
occurs above the critical Reynolds number, but to a lesser extent with in-
creasing Reynolds number. It has been shown here that this effect is seen
in the moment also.

In contrast to heaving motion, pitching motion resulted in smaller
deviations (peaks and troughs) in the peak-to-peak and root-méan—square
values of the 1ift and drag for the lowest Reynolds number of 2 x 10% The
oscillating Strouhal number for significant deviations during pitching :
decreased from 0.2 for Rn = Z X 105 to near 0.15 for Rn =5 x 105 to near
0.1 or below for Rn = 1 x 10, whereas the significant oscillating Strouhal
number for heaving remained about 0.2 for all three Reynolds numbers.

The average drag coefficient at Rn = 2 X 105 was ingreased someghat
for oscillation in either pitch or heave. For Rn =5 x 10" and 1 x 10,
the mean drag was reduced by heaving, whereas pitching motion appeared to have
little, if any, effect.

For oscillation in pitch and heave simultaneously at Rn =1x 106,
the unsteady 1lift was quite different depending on whether the axis of
rotation was forward or aft of the axis of the cylinder. The peak-to-peak
and root-mean-square values were higher when the axis of rotation was
forward. Although the 1lift values for combined motion were not similar to
either pitch or heave (except possibly the root-mean-square values for aft
oscillation), the mean, peak-to-peak, and root-mean-square values for drag

at Rn =1x 106 were very similar to the values for heaving alone.
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APPENDIX A

"‘POWER SPECTRA OF LIFT, DRAG, AND MOMENT
FOR THE NONOSCILLATING CYLINDER
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T T T T

T T
POWER SPECTRUM OF ]

LIFT FOR RUN 3

R, = 145 x 10°

CMAX = 1,596 x 10790

PERCENT

NOISE
VN

1.95 2.92 3.90 4.88 5.85 6.83 7.81 8.78 9.76
FREQUENCY IN Hz

T T T T

T T
POWER SPECTRUM OF _|

LIFT FOR RUN 2

R = 195x 10°

CMAX = 1.652x 10~ 01

PERCENT

.85 247 390 488 545 683 781 878  9.76
FREQHENCY [N Hz
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90.
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70.

60,

50.

40.

30.

20,

100.

90.

80.

70.

60.

50.

40,

30.

20.

T T T T T T
POWER SPECTRUM OF _
LIFT FORRUN10 |
R, = 2.43x10°
CMAX = 1.690x 1092 ]

\ NOISE
\ O . L /\\
97 1.95 2.92 3.90 4.88 5.85 6.83 7.81 8.78 9.76
FREQUENCY IN Hz
POWER SPECTRUM O
LIFTFORRUN 11 |
R, = 3.89x10°
CMAX = 2.965x 1001 7
97 1.95 2.92 3.90 4.88 5.85 6.83 7.81 8.78 9.76

FREQUENCY IN Hz
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PERCENT

PERCENT

100.

T ]

POWER SPECTRUM O
LIFT FOR RUN 12
R, = 4.86x10°
CMAX = 1.588x10%0

10.

100.

97

1.95

2.9

39 488 5.85
FREQUENCY IN Hz

6.83 781 8.78 9.76

90.

80.

7 .t T

POWER SPECTRUM OF |
LIFT FOR RUN 13
R = 5:84x10°

N 00
CMAX = 1.700x10

70.

60.

50.

40.

30.

20.

1.95

2.92

3.90  4.88 5.85
FREQUENCY IN Hz
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6.83 7.81 8.78 9.76




PERCENT

PERCENT

80,

40.

30.

10,

100.

90.

80.

70.

60,

50.

40.

30.

20,

¥ 0 T T
POWER SPECTRUM OF |

LIFT FOR RUN 14

R, = 9.73x10°

CMAX = 6.641x 1000

e,

57 1.95 2.92 390 488 5.85 6.83 7.0 8.78 9.76

FREQUENCY IN Hz

L T T T T T

POWER SPECTRUM O

LIFT FOR RUN 15

R, = 1.51x10°

CMAX = 6.822x10%1

f \IN

N

97 1.95 2.92 3.90 4.88 5.85 6.83 7.81 8.78 9.76

FREQUENCY IN Hz
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PERCENT

PERCENT

100. T =1 —T
POWER SPECTRUM OF
LIFT FOR RUN 15A
90. 6
R, = 1.51x10
CMAX = 3.954x 100}
8.
0.
60.
50.
0.
30.
20,
10. d l\
: TT TN
97 1.95 2.92 3.9 4.88 5.85 6.83 7.81 8.78 9.76
FREQUENCY IN Hz :
‘00' ¥ T t T T 1
POWER SPECTRUM OF _
DRAG FOR RUN 10
90. 5
= 2.43x10
CMAX = 4.447x 10" %3 1
80.
70.
60.
50.
40,
30.
NOISE
20, 1 \
N A
ol Y . \ \ 1/
A N . \/
0 N\ ~ v
0 97 1.95 2.92 3.90 4.88 5.85 6.83 7.81 8.78 9.76 .

FREQUENCY IN Hz
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PERCENT

PERCENT

100.

9.76

T T ¥ T T T
POWER SPECTRUM OF
DRAG FOR RUN 11
90. 5
R, = 3.89x10
CMAX = 2.899% 10702
80.
70,
6.
50.
40,
30.
20, l
10.
NOISE
0 o I~
0 97 1.95 2.92 3.90 4.88 5.85 6.83 7.81 8.78
FREQUENCY IN Hz
100, T
POWER SPECTRUM OF |
DRAG FOR RUN 12
%. A
R, = 4.86x 10
CMAX = 6.453x 10702 1
8.
70.
6.
50.
«.
2.
20.
NOISE
0, / A
! 14 \
b \V A \
0 97 1.95 2.92 3.90 4.88 5.85 6.83 7.81 8.78 9.76

FREQUENCY IN Hz
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PERCENT

PERCENT

100.

90.

80.

70.

60.

50.

40.

30.

20.

10.

100.

90.

80.

60,

40.

30.

20.

10.

POWER SPECTRUM OF |

DRAG FOR RUN 13

R = 5.84x10°
o 02

CMAX = 5.443x 10

NOISE

v M\J N \-
97 1.95 292 390 488 585 6.83  7.81 878 9.7
FREQUENCY IN Hz
1 I 1 i T T
POWER SPECTRUM OF _|
DRAG FOR RUN 14 |
R = 9.73x10°
Y —01 -
CMAX = 5,702x 10
i
THITITR
) \
\'j
N
\ \ NOISE
N \J \1\__/ W
97 195 292  3.90 488  5.85 6.83  7.81 878 9.76

FREQUENCY IN Hz
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PERCENT

100.

90.

80.

70.

60,

50,

40,

30,

20.

100,

90.

80.

70.

60,

50.

40.

30.

—r T Y

POWER SPECTRUM OF _|
DRAG FOR RUN 15
R, = 1.51x105
CMAX = 1.209x 10°}

/ A
N \/ Y

.97

195 292 390 488

5.85

FREQUENCY IN Hz

T L 1 T H 1
POWER SPECTRUM OF |
DRAG FOR RUN 15A
R, = 1.51x10° .
CMAX = 3.790x 1090

B

1_——->

W 1y

Y

N\~

97

1.95 2.92 3.90 4.88

5.85

FREQUENCY IN Hz
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PERCENT

PERCENT

100,

90.

80.

70.

60.

40,

30.

20.

10.

100.

L ) 1 J T T

POWER SPECTRUM O

MOMENT FOR RUN 10

_ 5
R, = 2.43x10

CMAX = 1.048x 10~ %4

NO[SE

J

>

l
-

97 1.95

2.92 3.90

4.88

5.85

FREQUENCY IN Hz

6.83 7.81 8.78

9.76

90.

80.

T T T T U

T
POWER'SPECTRUM OF |

MOMENT FOR RUN 11
R, = 3.89x10°
CMAX = 4.469x 10~ %4

70.

40.

30.

1.

NOISE

WR'AVA

~

NS

/1 VA

.97 1.95

2.92 3.90

4.88

5.85

FREQUENCY IN Hz
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PERCENT

PERCENT

100.

POWER SPECTRUM OF |
o MOMENT FOR RUN 12 |
' R, = 4.86x10°
CMAX = 1.638x 10”03
8.
70.
6.
0.
40. NOISE
30.
20.
|,
0. \
0 ) NA . K w
0 97 1.95 2.92 3.90 4.88 5.85 6.83 7.81 8.78 9.76
FREQUENCY IN Hz
100, T T T T
POWER SPECTRUM OF _
" MOMENT FOR RUN 13 |
' R, = 5.84x10°
CMAX = 2.587x107 03 1
80.
7.
60.
50.
40.
. NOISE
i
20, [ A
0 \
: v
\ //\ |
0 R \A ——
0 97 1.95 2.92 3.90 4.88 5.85 6.83 7.81 8.78 9.76

FREQUENCY IN Hz

57




PERCENT

80.

40.

100.

90.

80.

70.

T T 1 T T T

POWER SPECTRUM OF |

MOMENT FOR RUN 14 ]

R = 9.73x10° 1
n ~02
CMAX = 1.786x 10”02 |

10,

97 195 292 390 488 585 683 78 878 976
FREQUENCY IN Hz
T T 1 1 1 L
POWER SPECTRUM OF |
MOMENT FOR RUN 15
R = 1.51x10°
n ~01
CMAX = 1.030x10
b’
\A
NOISE
A
A

97

1.95

2.92

390 4.8 5.85
FREQUENCY IN Hz
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" PERCENT

100.

80.

10,

T T T r

POWER SPECTRUM OF |
MOMENT FOR RUN 15A |
R, = 1.51x10°

CMAX = 8.142x10™ 02

i
\| A | A NOISE
L/ ™~ -
97 195 2: 350 488 585 6B 74

FREQUENCY IN Hz
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APPENDIX B

LIFT, DRAG, AND MOMENT COEFFICIENTS FOR
THE NONOSCILLATING CYLINDER
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'Rn X ]05 (CL)p-p (CL)p-p/c (CL)p-p/s (CL)rms (CL)rms/c (CD)avq
1.46 0.662(1)* 3.424 0.533 0.234(1) 0.480 -—- i
1.95 | 0.388(1) 1.801 0.400 | 0.137(1) 0.265 -
2.43 0.135(2) 1.102 0.192 0.0365(2) 0.158 --- 2
3.89 0.210(2) 0.583 0.125 0.0682(2) 0.0901 0.5707.
4.86 0.573(2) 0.689 0.160 0.134(2) 0.1300 0.632d
5.84 0.493(4) 0.634 0.133 0.0920(4) 0.0964 0.634{
9.73 0.410(6) 0.440 0.160 0.0747(6) 0.0748 0.6875

15.10 0.707(8) 0.592 0.087 0.0998(8) 0.1024 0.646ﬁ
15.10 0.575(9) 0.435 0.097 0.0768(9) 0.0762 0.6237:
*Numbers in parenthesis refer to number of components considered.
(cp) (c,) (c,) (Cy) () x 10% | (C). - x 103
p-p D’p-p/c D’rms D'rms/c M'p-p M’ rms

0.122(3) 0.609 0.0265(3) 0.0802 0.686(1) 0.243(1)
0.162(5) 0.178 0.0265(5) 0.0534 1.690(3) 0.371(3)

| 0.180(7) 0.297 0.0250(7) 0.0391 1.987(5) 0.324(5)
0.207(9) 0.202 0.0253(9) 0.0315 2.386(8) 0.334(8)
0.234(9) 0.268 0.0320(9) 0.0391 2.912(9) 0.379(9)
0.199(7) 0.275 0.0286(7) 0.0367 2.360(8) 0.326(8)
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R, x 10° sy |G
1.46 0.195 | 0.331
. 1.95 0.195 | 0.194
2.43 0.234 | 0.0477
] : 0.000 | 0.0197
3.89 0.073 | 0.0960
0.293 | 0.0090
4.86 0.137 | 0.140
0.078 | 0.128
5.84 0.130 | 0.0849
0.049 | 0.0827
0.179 | 0.0523
0.309 | 0.0120
9.73 0.176 | 0.0634
0.127 | 0.0631
0.029 | 0.0543
0.283 | 0.0093
0.322 | 0.0076
0.410 | 0,007
15.10 0.158 | 0.0970
0.063 | 0.0561
0.038 | 0.0537
0.126 | 0.0379
0.006 | 0.0361
0.082 | 0.0267
0.108 | 0.0243
0.234 | 0.0216
15.10 0.076 | 0.0587
0.019 | 0.0573
0.107 | 0.0382
0.183 | 0.0362
. 0.151 | 0.0322
0.133 | 0.0281
'0.227 | 0.0159
- 0.271 | 0.0110
0.246 | 0.0102

R, x 10 Di Di
3.89 | 0.024 | 0.0309
0.2686 | 0.0152
0.2197 | 0.0150
4.86 | 0.0195 | 0.0212
0.2539 | 0.0204
0.0977 | 0.0162
0.1953 | 0.0138
0.3906 | 0.0093
5.8 | 0.098 | 0.0186
0.228 | 0.0180
0.326 | 0.0147
0.147 | 0.0124
0.016 | 0.0093
0.440 | 0.0081
0.472 | 0.0078
9.73 | 0.010 | 0.0186
0.147 | 0.0143
0.195 | 0.0128
0.283 | 0.0111
0.059 | 0.0109
0.254 | 0.0100
0.089 | 0.0700
0.332 | 0.0082
0.391 | 0.0072
15.10 | 0.013 | 0.0338
0.183 | 0.0146
0.139 | 0.0141
0.297 | 0.0098
0.253 | 0.0097
0.095 | 0.0097
0.316 -| 0.0094
0.063 | 0.0091
0.278 | 0.0068
15.10 | 0.032 | 0.0254
0.101 | 0.0182
0.013 | 0.0146
0.158 | 0.0142
0.208 | 0.0109
0.252 | 0.0082
0.227 | 0.0082

R, x 10° Sui | Gy x 10°
3.89 0.073 0.343
4.86 0.117 0.417

0.059 0.285

0.391 0.143

5.84 0.114 0.283
0.049 0.233

0.244 0.164

0.179 0.161

0.326 0.154

9.73 0.010 0.290
0.127 0.228

0.176 0.207

0.068 0.105

0.254 0.102

0.293 0.098

0.215 0.091

06.342 0.073

15.10 0.152 0.286
0.013 0.273

0.177 0.242

0.070 0.137

0.114 0.110

0.240 0.109

0.089 0.108

0.126 0.107

0.329 0.086

15.10 0.032 0.290
0.158 0.189

0.183 0.178

0.101 0.166

0.076 0.125

0.221 0,105

0.341 0.065

0.278 0.063
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APPENDIX C

LIFT, DRAG, AND MOMENT COEFFICIENTS FOR
CYLINDER OSCILLATING IN HEAVE
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R x 10 0.00 0.02 10.10
1,95 Ci &S5 0.194 | 0.1953 0.1031 | 0.1709 | o
0
Lift Interaction
Subtracted Out. 0.0 0.0 0 0.10 0
4.86 CLi & SLi 0.140 0.137 0
0.128 0.078 0
0
0
Lift Interaction '
Subtracted Out 0.0 0.0 .0
4.86 CDi & SDi 0.0212 | 0.0195 0
0.0204 | 0.2539 0
0.0172 | 3.691 0
0.0162 | 0.0977 0
| 0.0138 | 0.1953 0
0.0093 { 0.3906 0
0
0
. 0
0
Drag Interaction
Subtracted Out 0.0 0.0 0
1n3
4.86 CMi x 107 & SMi 0.417 0.]17 0
0.285 0.059 0
0.143 0.391 0
0
10
0
0
0
Moment Interaction
Subtracted Out 0.0 0.0 @




STROUHAL NUMBER OF FORCED OSCILLATION (Sf)

0.00 0.02 1 0.10 0.15 0.18 0.20

0.194 | 0.1953 0.1031 | 0.1709 | 0.1597 | 0.1465 | 0.4978 |0.1709 | 0.3606 |[0.1953 | 0
' 0.0313 | 0.0244 { 0.1361 |0.0244 | 0
0.0801 {0.0977 | 0
;9" 0.0 0.0 0 0.10 |o0.130 |o0.15 |o.190 [0.18 |0.230 [0.20 |o
0.140 | 0.137 0.1651 | 0.1465 | 0.2794 [0.1758 | 0.2713 [0.1953 | 0
0.128 | 0.078 0.0488 | 0.0781 | 0.0915 |0.0977 | 0.0977 [0.1563 | 0
‘ 10.0343 | 0.0488 | 0.0665 |0.0391 | 0.0632 {0.1074 | 0
0.0305 | 0.0195 | 0.0494 |0,0684 | 0
‘ ' 4 0.0465 |0.0098 |—
L0 1 0.0 | 0.0 10.130 | 0.15 0.190 |0.18 "~ [0.230 ]0.20 |0
0.0212 | 0.0195 0.01721] 0.1367 | 0.02490 | 0.0098 | 0.02287 [0.0293 | 0
0.0204 | 0.2539 0.01254| 0.0098 | 0.01227 {6.1270 | 0.01321 |0.1172 | ©
0.0172 | 3.691 0.01118 0.3223 | 0.01214 | 0.2148 | 0.01063 | 0.2246 | 0
0.0162 | 0.0977 0.00812| 0.1855 | 0.01096 | 0.3027 | 0.00990 | 0.3125 | 0
0.0138 | 0.1953 0.00804| 0.2246 | 0.00977 |0.3613 | 0.00847 | 0.3809 | 0
0.0093 | 0.3906 0.00761| 0.0781 | 0.00956 | 0.1855 | 0.00712 | 0.1563 | 0
0.00743| 0.0391 | 0.00783 | 0.0879 | 0.00627 | 1.5918 | 0
0.00653| 0.3711 | 0.00645 | 1.5918 | 0.00619 | 1.4941 | 0

. 0.00640| 1.5918 | 0.00512 | 1.0938 | 0.00515 | 0.2637

0.00618| 1.4941 | 0.00471 [ 1.6211 | 0.00483 | 0.4297
ion | 0.0 0.0 0.0063 | 0.15 | 0.0001 {0.18 | 0.0112 |0.20 | ¢
; 0.417 | 0.117 0.1949 | 0.1367 | 0.1849 |1.5918 | 0.1496 |1.5918 |
0.285 | 0.059 0.1607 | 1.5918 | 0.1564 |0.0098 | 0.1315 | 0.0586 | C
0.143 | 0.391 0.1376 | 0.0488 | '0.1396 |0.2051 | 0.1296 |0.0977 | C
0.1241 | 1.4941 | 0.1351 |0.0879 | 0.1253 |1.4941 | ¢
0.1149 | 7.3672 | 0.1346 |0.1270'| 0.1187 [ 0.1953 | ¢
0.1071 | 1.6211 | 0.1322 |1.6211 | 0.1053 | 0.0098 | (
0.0896 | 0.3027 | 0.1160 [1.3867 | 0.1030 | 1.6211 | (
0.0879 | 0.0098 | 0.1070 |1.0938 (

'0.1009 | 0.488 °
0.0988 | 0.1563.
ction | 5.9 0.0 0.1092 | 0.150 | 0.1 | o.250¢

: . . 10 . .1668 | 0.180 | 0.2596 |0.200 |
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 OSCILLATION (S,)

J

0.20 0.22 0.25 0.30 0.40 1.00
o | 0.3606 | 0.1953 | 0.3773 | 0.2197 | 0.4246 | 0.2441 | 0.5289 | 0.2930 | 0.8587 | 0.3906 | 5.753 | 0.9766
0.1361 [0.0244 | 0.1218 | 0.0244 | 0.2519 | 0.1709 | 0.2526 | 0.1709 | 0.1834 | 0.1709
0.0801 |0.0977 | 0.0495 | 0.3662 - :
0.230 |0.20 | 0.285 |0.22 [0.30 | 0.25 | 0.5289 | 0.30 | 0.8587 | 0.40 | 5.753 | 1.0
B | 0.2713 |0.1953 | 0.3340 | 0.2148 | 0.4146 | 0.2441
7 | 0.0977 |0.1563 | 0.0788 | 0.0977 | 0.0586 | 0.0684
1| 0.0632 |0.1074 | 0.0581 | 0.0391 | 0.0512 | 0.0879
| 0.0494 ]0.0684 | 0.0404 | 0.1563 | 0.0478 | 0.1172
—{ 0.0465 |0.0098 -
- [0.230 [0.20 ] o.285 |o0.22 {0,360 | 0.25
B |'0.02287 [ 0.0293 | 0.01487 | 0.0391 | 0.01358 [ 0.1270
0 | 0.01321 | 0.1172 | 0.01485 | 0.1367 | 0.01357 [ 0.1758
g | 0.01063 | 0.2246 | 0.01123 | 0.2344 | 0.01282 | 0.0098
7 | 0.00990 | 0.3125 | 0.00999 | 0.3125 | 0.01193| 0.2539
3 | 0.00847 | 0.3809 | 0.00992 | 0.4492 | 0.00779 | 0.2930
5 | 0.00712 | 0.1563 | 0.00641 | 1.5820 | 0.00634 | 0.3613
o | 0.00627 | 1.5918 | 0.00556 | 0.3906 | 0.00520 | 0.4297
B 0.00619 | 1.4941 | 0.00524 | 0.6055 | 0.00490 | 1.5918
B | 0.00515 [ 0.2637 0.00482 | 0.4688
1 | 0.00483 | 0.4297
0.0112 0.20 | 0.0136 | 0.22 |0.0173 | 0.25
0.1496 |1.5918 | 0.3048 | 0.0586 | 0.5285 | 0.2441
0.1315 [0.0586 | 0.2991 | 0.2148 | 0.3816 | 0.0488
' 0.1296 |0.0977°| 0.2142 | 0.3711 | 0.2091 [ 0.0098
0.1253 | 1.4941 | 0.2061 | 1.5820 | 0.1818 | 0.3711
0.1187 | 0.1953 | 0.1597 | 0.2930 | 0.1722 ‘| 0.4980
0.1053 | 0.0098 [ 0.1555 | 1.3086 | 0.1608 | 0.0977
0.1030 |1.6211 | 0.1478 | 0.4492 0.1553 | 0.7520
0.1284 | 0.5273
i
\]70.2596 |0.200 | 0.2856 | 0.220 | 0.3184 | 0.2500
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APPENDIX D

LIFT AND DRAG COEFFICIENTS FOR
CYLINDER OSCILLATING IN PITCH
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—

STROUHAL NUMBER OF FORCED OSCILLATION (S

;)

Rn X 105 0.00 0.02 . 0.10 0.15 0.18 0.20 0.22 0
1.95 (CL)p-p .0.388(1)* | 0.2988 0.2358 0.2038 0.3622 0.4212 0.1732 0
(CL)rms 9.137(1) 0.0809 0.0647 0.0583 0.1280 0.0963 0.0613 0

. (CD)ave 0.6946 0.9363 0.8857 0.9799 1.060 0.9755 0.9249 0

. 4.86 (CL)p_p 0.573(2) | 0.5952(7) 0.5624(7) 0.9892(6) 0:5758(8) 0.5452(6) | 0.5158(6) 0
(CL)rms 0.134(2) 0.0860(7) 0.0812(7) 0.]562(6) 1 0.0871(8) 0.0986(6) 0.0873(6) 0

(CD)ave 0.6326 0.6338 0.6260 0.6794 0.6305 0.6370 0.6421 0

(CD)p_p 0.196 0.1018(8) 0.0774(6) 0.1401(9) 0.0888(8) , 0.0936(7) .0'0952(9) 0

(CD)rms 0.0291(6) | 0.02655(8) 0.02388(6) | 0.03930(9) 0.02431(8) | 0.02809(7) | 0.02465(9) ]

9.73 (CL)p_p 0.410(6) 1.1492(14) 0.7428(7) 1.0400(16) 0.9010(13) 0.8996(13) 0.8118(11) 0
(CL)rms 0.0747(6) | 0.1205(14) 0.1917(7) 0.1075(16) 0.0977(13) 0.1004(13) 0.1006(11) 0

(CD)ave 0.6875 0.7101 0.7151 0.6969 0.7179 0.6777 0.7015 0

(Cb)p-p 0.207(9) 0.2025(19) 0.1333(9) 0.1644(18) 0.1354(14) 0.1329(14) 0.1355(13) 0

(CD)rms 0.0253(9) | 0.03660(19) | 0.03703(9) | 0.02976(18) | 0.02885(14) | 0.02774(14) | 0.03044(13) | 0

" - -
Numbers in parenthesis refer to number of components considered.




_]_;

LLATION (S,)

1.00

0.22 0.25 0.30 0.40 0.80 2.00
0.1732 0.2394 0.2060 0.2586 0.5800 0.3830
0.0613 0.0657 0.5192 0.0561 0.1769 0.1058
0.9249 0.8418 0.8362 0.9045 1.055 0.8803

)| o0.5158(6) | 0.6574(5) | 0.7170(5) | 0.6292(5) | 0.6028(5)

) | o.0873(6) | 0.1119(5) | 0.1270(5) | 0.1114(5) | 0.1007(5)
0.6421 0.6385 0.6425 0.6604 0.6551

) | 0.0052(9) | 0.0852(8) | 0.1087(8) | 0.0949(8) | 0.0675(4)

1 | 0.02a65(8) | 0.023108) | 0.02380(8) | 0.02618(8) | 0.03024(2)

3 | 0.8118(11) | 0.7382(11) | 0.8414(18) | 0.8358(13) |

3) | 0.1006(11) | 0.0889(11) ‘| 0.0987(14) | 0.0952(13)
0.7015 0.6913 0.6922 0.6939

4) | 0.1355(13) | 0.1270(14) | 0.1361(15) | 0.1382(14)

14) | 0:03044(13) | 0.02633(14) | 0.02718(15) | 0.02885(14)




STROU

R, x10° | 0.00 0.02 0.10 0.15 0.18

1.95 Y 0.194 | 0.195 | 0.1058 | 0.1953 | 0.0857 | 0.1709 | 0.0793 | 0.1953 | 0.1811 | 0.19

0.0436 | 0.0488 | 0.0322 0 0.0226 | 0.0244
4.86 Ci & Sy 0.140 | 0.137 | 0.0720 | 0.0684 | 0.0711 | 0.1270 | 0.1422 | 0.0781 | 0.0748 | 0.06¢
0.128 | 0.078 | 0.0627 | 0.1563 | 0.0533 | 0.0391 | 0.0971 | 0.0293 | 0.0660 | 0.12]
0.0440 | 0.1270 | 0.0441 | 0.0879 | 0.0834 | 0.1465 | 0.0474 | 0.00
0.0366 | 0.0391 | 0.0368 | 0.1563 | 0.0801 | 0.1758 | 0.0456 | 0.15¢
0.0345 | 0.1953 | 0.0289 | 0 0.0738 [ 0.1270 | 0.0255 | 0.18
0.0309 | 0.0098 |-0.0279 | 0.1855 | 0.0181 | 0.2441 | 0.0108 | 0.26:
0.0169 | 0.2539 | 0.0192 | 0.2344 ' 0.0097 | 0.214
B 0.0082 | 0.312
4.86 Cos & Sp; 0.0212 | 0.0195| 0.0172 | 0.1270 | 0.0195 | 0.0195 | 0.0379 | 0.0098 | 0.0181 | 0.05¢
0.0204 | 0.2539 | 0.0165 | 0.0977 | 0.0165 | 0.0977 | 0.0278 | 0.0488 | 0.0154 | 0.195
0.0172 | 3.691 | 0.0156 | 0.2637 | 0.0139 | 0.1660 | 0.0135 | 0.2539 | 0.0133 | 0.029
0.0162 | 0.0977 | 0.0153 | 0.0195 | 0.0127 | 0.2734 | 0.0121 | 0.3125 | 0.0123 | 0.166
0.0138 | 0.1953 | 0.0099 | 0.2344 | 0.0083 | 0.2441 | 0.0120 | 0.1074 | 0.0114 | 0.117
0.0093 | 0.3906 | 0.0098 | 0.1953 | 0.0082 | 0.3613 | 0.0117 | 0.1660 | 0.0088 | 0.234
0.0098 | 0.0488 | 0.0116 | 0.2051 | 0.0076 | 0.410
0.0087 | 0.3320 0.0093 | 0.45%0 | 0.0074 | 0.283

0.0081 | 0.3613

Drag Interaction

qrag “nteractl 0 0 [<0.001 [o0.02 |[o0.007 [ o0.10 [o0.003 0.5 |o.0055 [o0.18
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.. STROUHAL NUMBER OF FORCED OSCILLATION (Sf)

e ) e e

0.18 0.20 0.22 0.25 0.30 0.40 0.80

811 | 0.1953 | 0.1193 | 0.1953 | 0.0866 | 0.2197 [ 0.0870 | 0.1953 | 0.0585 | 0.1953 | ¢.0643 | 0.1953

0.0539 | 0.0977 0.0327 | 0.0977 | 0.0444 | 0.0732 | 0.0372 | 0.0977

0.0374 | 0.0244 .0279 | 0.3906
748 | 0.0684 | 0.0965 | 0.0684 | 0.0975 | 0.0391 | 0.0928 | 0.0293 | 0.1321 | 0.0879 | 0.1109 | 0.0391 | 0.0990 | 0.1563
660 | 0.1270 | 0.0861 | 0.1563 | 0.0469 | 0.1563 | 0.0840 | 0.1563 | 0.0805 | 0.1367 | 0.0750 | 0.1270 | 0.0588 | 0.0293
474 | 0.0098 | 0.0431 [ 0.1074 | 0.0387 | 0.1270 | 0.0785 | 0.0586 | 0.0669 | 0.0098 | 0.0693 | 0.1660 | 0.0579 | 0.1172
456 | 0.1563 | 0.0260 | 0.2344 | 0.0338 | 0.0977 | 0.0531 | 0.0977 | 0.0590 | 0.1758 | 0.0425 | 0.0977 | 0.0461 | 0.0586
255 | 0.1855 | 0.0111 | 0 0.0258 | 0.2148 | 0.0204 | 0.2441 | 0.0199 | 0.3027 | 0.0170 | 0.2539 | 0.0396 | 0.0879
108 | 0.2637 | 0.0099 | 0.3223 | 0.0154 | 0.1855
097 | 0.2148 |
082 | 0.3125 _ &
n81 | 0.0586 [ 0.0245 [ 0.0195 | 0.0172 | 0.2051 [ 0.0142 | 0.0879 | 0.0323 | 0.0195 | 0.0289 | 0.4004 [ 0.1201 | 0.7910
154 | 0.1953 | 0.0163 | 0.3027 | 0.0161 { 0.0098 | 0.0139 | 0.0488 | 0.0229 | 0.0586 | 0.0189 | 0.0488 | 0.0363 | 0.0195
N33 | 0.0293 | 0.0162 | 0.1172 | 0.0130 | 0.1563 | 0.0133 | 0.1465 | 0.0161 | 0.1953 | 0.0174 | 0.2246 | 0.0169 | 0.1270
123 [ 0.1660 | 0.0136 | 0.1465 | 0.0122 | 0.1172 | 0.0131 | 0.2441 | 0.0118 | 0.2441 { 0.0153 | 0.0977 | 0.0142 | 0.0977
M4 | 0.1172 | 0.0122 | 0.2148 | 0.0102 | 0.3516 | 0.0127 | 0.2930 | 0.0115 | 0.1367 | 0.0131 | 0.0195
088 | 0.2344 | 0.0108 | 0.0781 | 0.0101 | 0.0879 | 0.0112 | 0.0195 | 0.0114 | 0.2930 | 0.0119 | 0.1270
1076 | 0.4102 | 0.0070 | 0.3809 | 0.0094 | 0.3711 | 0.0109 | 0.2051 | 0.0109 | 0.3320 | 0.0098 | 0.2539
1074 | 0.2832 0.0080 | 0.3125 | 0.0079 | 0.4297 | 0.0078 | 0.3613 | 0.0086 | 0.2832

0.0074 | 0.0586 | |

055 ( 0.18 | 0.0070 | 0.20 | 0.0084 | 0.22 |o0.012 |o0.25 [0.016 [0.30 [0.029 [0.40 }o0.12 | 0.80




-

0.40 0.80 1.00 2.00
3 0643 | 0.1953 0.2464 | 0.1953 | 0.1407 | 0.1953
> | 0.0372 | 0.0077 0.0436 | 0.3174 | 0.0508 | 0.0488
0279 | 0.3906
) &.1109 0.0391 | 0.0990 | 0.1563
' | 6.0750 | 0.1270 | 0.0588 | 0.0293
1| 0.0693 | 0.1660 | 0.0579 | 0.1172
v | 0.0425 | 0.0977 | 0.0461 | 0.0586
' ?.0170 0.2539 | 0.0396 | 0.0879
|
|
d.0289 | 0.4004 | 0.1201 | 0.7910
0.0189 | 0.0488 | 0.0363 | 0.0195
0.0174 | 0.2246 | 0.0169 | 0.1270
0.0153 | 0.0977 | 0.0142 | 0.0977
0.0131 | 0.0195
0.0119 | 0.1270
0.0098 | 0.2539
0.0086 | 0.2832
4.029 0.40 |o0.12 | 0.80




STROUHAL NUMBER OF FORCED OSCILLAT

R, X 10 0.00 0.02 0.10 0.15 0.18
9.73 CLi & Sy 0.0634 | 0.176 | 0.0763 | 0.0879 | 0.0841 | 0.1758 | 0.0652 | 0.1660 | 0.0583 | 0.0586
0.0631 | 0.127 | 0.0615 | 0.0537 | 0.0735 | 0.1270 | 0.0574 | 0.0195 | 0.0534 | 0.1709
0.0543 | 0.029 | 0.0612 | 0.1514 | 0.0689 | 0.0684 | 0.0555 | 0.1025 | 0.0527 | 0.0293
0.0093 | 0.283 | 0.0546 | 0.1270 | 0.0675 |.0.0293 | 0.0487 | 0.0781 | 0.0507 | 0.0830
0.0076 | 0.322 | 0.0529 | 0.1660 | 0.0540 | 0.0977 | 0.0468 | 0.1807 | 0.0404 | 0.0098
0.0071 | 0.410 | 0.0498 | 0.0244 | 0.0127 | 0.2734 | 0.0437 | 0.1465 | 0.0372 | 6.0977
' 0.0451 | 0.0049 | 0.0108 | 0.2441 | 0.0416 | 0.0586 | 0.0350 | 0.1318
0.0438 | 0.1123 0.0404 | 0.1270 | 0.0344 | 0.1514
0.0418 | 0.1807 0.0365 | 0.0391 | 0.0338 | 0.1904
0.0292 | 0.1953 10.0260 | 0.2002 | 0.0258 | 0.1123
0.0170 | 0.2393 0.0187 | 0.2197 | 0.0124 | 0.2393
0.0154 | 0.2686 0.0104 | 0.2832 | 0.0085 | 0.2539
0.0153 | 0.2197 0.0078 | 0.2344 | 0.0080 | 0.3027
0.0108 | 0.2832 0.0074 | 0.3076
0.0072 | 0.2637
) 0.0068 | 0.2490
Cpi & 5, 5 0.0186 | 0.10 | 0.0240 | 0.0146 | 0.0380 | 0.0098 | 0.0174 | 0.0293 | 0.0235 | 0.0098
0.0146 | 0.147 | 0.0223 | 0.0342 | 0.0167 | 0.3125 | 0.0121 | 0.1123 | 0.0131 | 0.1123
0.0128 | 0.195 | 0.0146 | 0.0977 | 0.0165 | 0.0879 | 0.0133 | 0 0.0126 | 0.2148
0.0111 | 0.283 | 0.0127 | 0.1221 | 0.0146 | 0.2148 | 0.0129 | 0.2344 | 0.0120 | 0.0781
0.0109 | 0.059 | 0.0126 | 0.0830 | 0.0146 | 0.3516 | 0.0126 | 0.0537 | 0.0119 | 0.1514
0.0100 | 0.254 | 0.0125 | 0.1416 | 0.0125 | 0.1563 { 0.0121 | 0.1563 | 0.0111 | 0.0586
0.0100 | 0.089 | 0.0119 | 0.2686 | 0.0083 | 0.2637 | 0.0116 | 0.2783 | 0.0080 | 0.1758
0.0082 | 0.332 { 0.0115 | 0.2002 | 0.0079 | 0.4102 | 0.0097 | 0.0879 | 0.0077 | 0.4004
0.0072 | 0.391 | 0.0101 | 0.2490 | 0.0059 | 0.4688 | 0.0084 | 0.2148 | 0.0074 | 0.3613
0.0097 | 0.0684 0.0083 | 0.1709 | 0.0071 | 0.3369
0.0096 | 0.2295 0.0081 | 0.3223 | 0.0069 | 0.2393
0.0092 | 0.0488 0.0073 | 0.3467 | 0.0069 | 0.2637
0.0083 | 0.3418 | 0.0070 | 0.0732 | 0.0064 | 0.1904
0.0067 | 0.4102 0.0067 | 0.3125 | 0.0063 | 0.2832
0.0062 | 0.3223 10.0064 | 0.1367
0.0062 | 0.1855 . 0.0050 | 0.4248
0.0060 | 0.3662 0.0047 | 0.2979
0.0047 | 0.4443 0.0047 | 0.3809
0.0047 | 0.5078
Drag Interaction | 0 0 |<0.001 |o0.02 |o0.0017 [0.70 |0.0039 |0.15 |o0.55 |[0.18
Subtracted Out
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R OF FORCED OSCILLATION (Sf)

0.18 0.20 0.22 0.25 0.30 0.40
50 | 0.0583 | 0.0586 | 0.0771 | 0.0586 | 0.0679 | 0.0635 | 0.0662 | 0.1709 | 0.0902 | 0.1563 | 0.0595 | 0.1660
3 | 0.0534 | 0.1709 [ 0.0574 | 0.0781 | 0.0580 | 0.1074 | 0.0532 | 0.0586 | 0.0509 | 0.1416 ‘| 0.0527 | 0.1318
25 | 0.0527 | 0.0293 | 0.0493 | 0.1074 | 0.0536 | 0.1514 | 0.0513 | 0.1318 | 0.0478 | 0.0879 | 0.0505 | 0.0977
31 | 0.0507 | 0.0830 | 0.0418 | 0.1367 | 0.0525 | 0.0195 | 0.0466 | 0.0977 | 0.0441 | 0.0684 | 0.0491 | 0.0488
37 | 0.0404 | 0.0098 | 0.0391 | 0.1758 | 0.0525 | 0.1807 | 0.0413 | 0.0342 | 0.0389 | 0.0488 | 0.0489 | 0.0684
55 | 0.0372 | 0.0977 | 0.0355 | 0.1221 | 0.0467 | 0.0879 | 0.0221 | 0.2490 | 0.0300 | 0.0244 | 0.0458 | 0.0342
36 | 0.0350 [ 0.1318 | 0.0320 | 0.0244 | 0.0363 | 0.0049 | 0.0217 | 0.0781 | 0.0271 | 0.0049 | 0.0332 | 0.1807
70 | 0.0344 | 0.1514 | 0.0317 | 0.1514 | 0.0168 | 0.2197 | 0.0188 | 0.2295 | 0.0233 | 0.1172 | 0.0250 | 0.0049
91| 0.0338 | 0.1904 | 0.0294 | 0.0098 | 0.0080 | 0.2979 | 0.0184 [ 0.0195 | 0.0159 | 0.2979 | 0.0166 | 0.2051
02 | 0.0258 | 0.1123 | 0.0269 | 6.1904 | 0.0078 | 0.2637 | 0.0159 | 0.0049 | 0.0154 | 0.2051 | 0.0116 | 0.2393
97 | 0.0124 | 0.2393 | 0.0147 | 0.2148 | 0.0063 | 0.2441 0.01$6 0.2148 | 0.0120 | 0.2246 | 0.0095 | 0.3955
32 | 0.0085 | 0.2539. 0.0076 | 0.2783 ; 0.0108 | 0.2734 | 0.0081 | 0.2881
44 | 0.0080 | 0.3027 | 0.0073 | 0.2490" | 0.0075 | 0.2490 | 0.0073 | 0.2686
76 { 0.0069 | 0.3467
37 |
90 | .
93 | 0.0235 | 0.0098 | 0.0189 [ 0.0098 | 0.0240 | 0.0098 | 0.0167 | 0.1221 | 0.0198 | 0.0098 |.0.0310 | 0.3995
23 | 0.0131 | 0.1123 | 0.0151 | 0.1953 | 0.0196 | 0.0488 o.o1§2 0.0098 | 0.0144 | 0.0342 | 0.0197 | 0.0049
0.0126 | 0.2148 | 0.0132 | 0.0342 | 0.0129 | 0.0977 | 0.0140 | 0.2490 | 0.0135 | 0.2979 | 0.0159 | 0.0684
44 | 0.0120 | 0.0781 | 0.0116 | 0.3027 | 0.0120 | 0.2246 o.0117 0.2100 | 0.0132 | 0.1367 | 0.0123 | 0.1270
37 | 0.0119 | 0.1514 | 0.0111 | 0.1367 | 0.0112 | 0.2881 0.0143 0.2246 | 0.0108 | 0.1611 | 0.0113 | 0.1611
63 | 0.0111 | 0.0586 | 0.0105 | 0.0928 | 0.0100 | 0.1172 | 0.00d6 | 0.2832 | 0.0106 | 0.1123 | 0.0112 | 0.0203
83 | 0.0080 | 0.1758 | 0.0099 | 0.2148 | 0.0095 | 0.1563 | 0.0093 | 0.1367 | 0.0089 | 0.0830 | 0.0111 | 0.1953
79 | 0.0077 | 0.4004 | 0.0095 | 0.1514 | 0.0085 | 0.3955 | 0.0087 | 0.0342 | 0.0088 | 0.0586 | 0.0086 | 0.2734
48 | 0.0074 | 0.3613 | 0.0084 | 0.0830 | 0.0085 | 0.2588 | 0.0080 | 0.3711 | 0.0087 | 0.3818 | 0.0085 | 0.3418
09 | 0.0071 | 0.3369 | 0.0073 | 0.0635 | 0.0081 | 0.2002 | 0.0074 | 0.3467 | 0.0080 | 0.2148 | 0.0076 | 0.3027
23 ] 0.0069 | 0.2393 | 0.0065 | 0.4150 | 0.0068 | 0.1318 | 0.0072 | 0.1611 | 0.0080 | 0.2441 | 0.0075 | 0.0439
67 | 0.0069 | 0.2637 | 0.0062 | 0.2686 | 0.0067 | 0.1416 | 0.0072 | 0.0781 | 0.0076 | 0.3174 | 0.0071 | 0.2393
'32 | 0.0064 | 0.1904 | 0.0059 | 0.3467 | 0.0061 | 0.3027 | 0.0064 | 0.0635 | 0.0070 | 0.2783 | 0.0060 | 0.2588
25 | 0.0063 | 0.2832 | 0.0058 | 0.2490 0.0063 | 0.4150 | 0.0065 | 0.1953 | 0.0054 | 0.4639
167 : § 0.0063 | 0.1758
48 |
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APPENDIX E

LIFT AND DRAG COEFFICIENTS FOR CYLINDER
OSCILLATING IN PITCH AND HEAVE
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